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Background:

● Groundwater is the primary source of irrigation for ~62% of the net 
irrigated area (Government of India, 2016)

● Groundwater decline can affect economic outcomes in several ways. 

● For example, reduction in groundwater levels leads to an increase in 
poverty and poses a threat to food production through declining land 
productivity (Sekhri, 2014; Seckler, et al., 1998). 

● In this project, we seek to understand the relationship between 
groundwater levels and agricultural prices.  

● Prices are an inherent component of farm revenue and have invited a 
significant amount of government intervention to help farmers realize 
better returns. 



Background:

● Under the Agricultural Produce Marketing Acts state governments 
notify and designate commodities and market areas where regulated 
trade can take place. 

● In APMC mandies, prices are discovered through open auction(s).

● Critically, once an area is declared a market area and falls under the 
jurisdiction of a Market Committee, no person or agency is allowed 
freely to carry on wholesale marketing activities elsewhere.

 



Data Sources: 
● Date wise prices for Paddy: Scraped from AgMarknet, an 

e-governance portal managed by Ministry of Agriculture and Farmers’ 
Welfare. We use the modal price for our analysis.

● Groundwater (GW) data from India-Water Resources Information 
System (WRIS)  which uses multiple agencies like CGWB and 
APWRIMS to compile the data. The data lists the depth to 
groundwater (meters below ground level) for each well at a monthly 
frequency.

● States: 21 | Period of analysis: Kharif, 2017 (GW: May-September | 
Modal Price: October-December)

● We find GW observation wells near each of the mandis (within 1.5 
kilometers of each mandi). In case of multiple such wells, we take an 
average value. 

 



States where paddy is 
exchanged in APMCs.



Visualizing the APMC Mandis 
where paddy is exchanged. 

 N = 1054



Visualizing the groundwater 
observation wells. | N=5573



Plan: 
Exploratory Data Analysis: 

● Basic summary statistics
● Why consider a spatial analysis at all?
● Stationarity : agro-ecological zones
● Zone-wise summary statistics

Spatial Regression Analysis: 

● OLS model (Use Near tool to assign a GW well near to each Mandi (less than 1 
kilometer))

● Limitations of the OLS model
● Justifying the use of Agro-ecological zones as a basis for stationarity
● Alternative model specifications
● Choosing the ‘best’ model 

 



Revised Results 

Major Changes:
- Modal Price was considered to be for post-harvest season: October  - December 

(2017) while the groundwater and rainfall data was considered for the Kharif 
season: May - September (2017).

- Instead of using a Queen’s weight matrix, a 6-neighbor inverse-distance weight 
matrix was taken.



Summary statistics

Variable N Mean SD Minimum Maximum

Groundwater 1025 8.46 9.01 0.04 85.89

Modal Price 
(Rupees/ Quintal)

1025 1725.98 407.53 1052 3301.25

Rainfall 1025 740.36 310.37 355.9 1926.1



● Outlier value: 
3301.25

● Corresponds to: 
Haryana

Histogram for modal price, Kharif(2017) 



● Outlier values: 
>43.68 (P99)

● Corresponds to: 
● Karnataka (4 

obs.)
● Gujarat (3 obs.)
● Punjab (2 obs.)

Histogram for depth to groundwater, Kharif(2017) 



- The Moran’s I statistic is an indicator of spatial correlation. Higher 
the value, higher is the correlation between value at point i and value 
for neighbour(s) j. 

- The high Moran’s I statistics clearly indicate substantial spatial 
autocorrelation in the variables included in the analysis.

Variable Moran’s I statistic 
(K-Neighbors Inverse Distance 

Weights Matrix)

Modal Price 0.63***

GW 0.37***



Moran’s I (K-Neighbors Inverse 
Distance Weights Matrix) for GW 

Moran’s I (K-Neighbors Inverse 
Distance Weights Matrix) for Modal 

Price 



Visualizing 
Outliers:
Boxplot for GW



Visualizing Outliers: 
Boxplot for Modal Price 



Local Indicators of 
Spatial Autocorrelation 
(LISA) Plot Groundwater 

- The cluster map shows 
locations with a significant 
local Moran’s statistic 
classified by the type of 
spatial correlation

- High-high GW level 
implies regions with high 
values (i.e. higher GW 
stress) are surrounded by 
regions with high GW 
stress. 



LISA Plot Groundwater 

Low-low regions were usually in observed in states like Odisha, West Bengal and 
Assam. 

● Here, West Bengal and Odisha seemed strange. Turns out, 2017 is a flood year for West 
Bengal with heavy rains in July-August. 

● (Source:https://economictimes.indiatimes.com/news/economy/agriculture/over-2-lakh
-hectares-land-damaged-in-west-bengal-rains/articleshow/48336815.cms?from=mdr)

High-high regions were usually observed in states like Punjab, Haryana, Delhi 
and some parts of Andhra Pradesh/Karnataka.

● Punjab, Haryana and Delhi have heavily stressed groundwater table as expected. 

https://economictimes.indiatimes.com/news/economy/agriculture/over-2-lakh-hectares-land-damaged-in-west-bengal-rains/articleshow/48336815.cms?from=mdr
https://economictimes.indiatimes.com/news/economy/agriculture/over-2-lakh-hectares-land-damaged-in-west-bengal-rains/articleshow/48336815.cms?from=mdr


Low-low regions were usually 
in observed in states like 
Chhattisgarh, Assam, Uttar 
Pradesh and Jharkhand.

LISA Plot Modal Price 



LISA Plot Modal Prices 

High-high regions were observed in states like Punjab, Haryana, Delhi, 
and some parts of Andhra Pradesh.

● Interestingly, we don’t observe a cluster of high or low prices in West Bengal. This is 
because most of the crop itself got destroyed. But, in case of Jharkhand, we do observe a 
low-low cluster. 

● The high-high regions for GW stress coincide with the high-high clusters of prices. 



Stationarity Considerations: Agro-Ecological 
Zones (AEZs)

● Released by The Center for Sustainability and the Global Environment (SAGE) at 
the University of Wisconsin in 2007

● Divides the world into 18 zones dependent on:
● Temperature
● Rainfall
● Length of growing period
● Soil suitability
● Crop type



Agro-Ecological Zone List

Grid Code Moisture Regime

1 Arid

2 Dry semi-arid

3 Moist semi-arid

4 Sub-humid

5 Humid

6 Humid; year round 
growing season

7 Arid

8 Dry semi-arid

Grid Code Moisture Regime

9 Moist semi-arid

10 Sub-humid

11 Humid 

12 Humid; year round 
growing season

13 Arid

14 Dry semi-arid

15 Moist semi-arid

16 Sub-humid



Visualizing the 
AEZs:



Broader classification used: 

Arid/ Semi-arid regions: 2,3,7,8,9 

● 770 observations

Humid/ Sub-humid regions: 4,5,6,10,11

● 255 observations



Zone Wise Summary Statistics:

Zone Variable Mean SD Minimum Maximum

ARID

Groundwater 9.38 9.66 0.34 85.89

Modal Price (Rupees/ 
Quintal)

1757.86 445.29 1052 3301.25

Rainfall 694.29 244.28 355.9 1199

HUMID

Groundwater 5.67 5.91 0.04 37.88

Modal Price (Rupees/ 
Quintal)

1629.7 238.4 1078.25 2783.33

Rainfall 879.47 428.18 389.9 1926.1



Insights:

Arid regions exhibit higher GW stress on average as compared to humid 
regions. 

Modal price in arid regions is higher on average as compared to humid 
regions.

Rainfall is on average higher in humid regions as compared to arid regions. 

Mean(Humid Regions) - Mean(Arid Regions) T-Value

Groundwater -5.76***

Modal Price (Rupees/ Quintal) -4.39***

Rainfall 8.52*** ***p≤0.01 | **p≤0.05 | *p≤0.10



Zone Wise Histogram: (Modal Price)

Humid regions have 
higher density for 

lower price values as 
compared to arid 

regions. 



Zone Wise Histogram: Groundwater

Humid regions have 
lower depth to 
groundwater as 

compared to arid 
regions. 



Correlation between groundwater levels and modal price for 
Paddy 

Positive correlation 
between GW levels 

and prices. 



Correlation between groundwater levels and modal price for 
Paddy (Raw Data)

Visibly flatter 
curve for humid 

regions.  

AridHumid



Modal Price = β0+β1(GW)+u …(1)

OLS: Ordinary Least Squared (Assuming Zero 
Spatial Correlation)

Variable (Dependent: Modal 
Price)

Coefficient (SE)

Intercept 1659.84***
(17.01)

Groundwater 7.95***
(1.36)

N = 1025 | R2= 0.032

***p≤0.01 | **p≤0.05 | *p≤0.10

Areas with higher 
groundwater 
stress, have 

higher prices. 



Modal Price = β0+ β1(GW) + β2(Rainfall)+u …(1)

OLS Model (Including Rainfall):

Variable (Dependent: Modal 
Price)

Coefficient (SE)

Intercept 1997.15***
(37.06)

Groundwater 3.42*
(1.38)

Rainfall -0.41***
(0.04)

N = 1025 | R2= 0.13

***p≤0.01 | **p≤0.05 | *p≤0.10

Areas with higher 
groundwater 
stress, have 

higher prices but 
the coefficient is 

now lower. 
Further, areas 

with higher 
rainfall have 
lower prices. 



Zone-wise OLS Regressions:
Region Variable 

(Dependent: 
Modal Price)

Coefficient (SE)

ARID Intercept 1684.46 ***
(19.81)

Groundwater 7.90***
(1.46)

HUMID Intercept 1630.32***
(34.40)

Groundwater -0.03
(4.22)

N = 1025 | R2= 0.95

Slope and intercepts vary across all 
the regions (regimes).

Modal Price = β0+β1(GW)+u 
…(2)

***p≤0.01 | **p≤0.05 | *p≤0.10

In humid areas, the effect of 
groundwater is not significant 
because rainfall is in abundance. So, 
the effect of GW translates to price 
discovery only in places where it 
really matters, i.e. areas of GW 
shortage. 
Further, the value of slope 
coefficient itself shows that all the 
effect of GW coming from the arid 
regions. 



Zone-wise OLS 
Regressions 
(Including Rainfall)

Region Variable (Dependent: 
Modal Price)

Coefficient 
(SE)

ARID Intercept 2229.04 ***
(48.35)

Groundwater 1.51
(1.45)

Rainfall -0.70***
 (0.06)

HUMID Intercept 1742.78***
(62.98)

Groundwater -1.89
(4.05)

Rainfall -0.12***
 (0.06)

N = 1025 | R2= 0.96

Modal Price = β0+β1(GW) + 
β2(Rainfall) +u …(2)

***p≤0.01 | **p≤0.05 | *p≤0.10

Upon inclusion of rainfall, we 
see similar results. However, 
these results have not yet 
accounted for the spatial 
aspect. 



Chow test: Comparing model with and without AEZ dummies

Without rainfall:

- The value of the test statistic obtained for the model was 21.33***. This 
indicates that the model coefficients are not constant across regimes, 
indicating spatial heterogeneity. And thus, there is need to introduce spatial 
regimes. 

With rainfall:

- Now, test statistic value came out to be 20.80***, which is significant as well 
but the value is lower as compared to the model without considering the 
rainfall, indicating that including rainfall is a better option. In either case, 
considering spatial zones is important. 

***p≤0.01 | **p≤0.05 | *p≤0.10



Moran’s I for Regression Residuals (OLS):

- The results for all OLS regressions show high Moran’s I values which are highly 
significant. This rejects the null hypothesis of non-spatially correlated error 
terms. Thus, there is a need to use regression model that accounts for this.

Model Specification Global Moran’s I for regression residuals

Modal ~ GW 0.59*** 
(35.59)

Spatial regime regression (GW) 0.58*** 
(35.54)

Modal ~ GW + Rainfall 0.56***
(34.37)

Spatial regime regression (GW + Rainfall) 0.54***
 (33.04)



Spatial Lag Model: Global Correlation
- MLE of the spatial simultaneous autoregressive lag model of the form:

Y = ρWY + Xβ + ε

Variable (Dependent: 
Modal Price)

Coefficient (SE)

Intercept 537.80*** 
(53.23)

GW 0.20 
(0.96)

Rainfall -0.11***
 (0.03)

N: 1025 | Rho: 0.74
Log likelihood: -7463.84

LM test for residual autocorrelation test value: 23.78***
***p≤0.01 | **p≤0.05 | *p≤0.10

On accounting for the spatial 
correlation in Y, we see that the 
impact of GW on prices is now 
insignificant. This indicates 
that the impact of GW on 
prices is completely translated 
by the neighbouring prices at a 
point. To explore this further, 
we run the spatial durbin 
model.



Zone Variable (Dependent: 
Modal Price)

Coefficient (SE)

ARID Intercept 627.95*** 
(62.78)

GW 0.05 
(1.05)

Rainfall -0.21*** 
(0.04)

HUMID Intercept 520.70*** 
(62.73)

GW -3.37 
(2.91)

Rainfall -0.05
(0.04)

N: 1025 | Rho: 0.72
Log likelihood: -7458.6

LM test for residual autocorrelation test value: 20.22***

Spatial Lag 
Model: 
Zone-wise

***p≤0.01 | **p≤0.05 | *p≤0.10



Spatial Durbin Model: Local and Global Correlation
MLE of the spatial durbin 
model of the form:

Y = ρWY + Xβ + WXθ + ε

Variable (Dependent: 
Modal Price)

Coefficient (SE)

Intercept 529.94*** 
( 57.67)

GW  -2.72**
(1.09)

Rainfall 0.08
(0.12)

Lagged GW 2.81**  
 (1.08)

Lagged Rainfall -0.19
(0.12)

N: 1025 | Rho: 0.73
Log likelihood: -7461.12

LM test for residual autocorrelation test value: 22.56***
***p≤0.01 | **p≤0.05 | *p≤0.10



Spatial Durbin Model Inferences_Part 1:

● Higher groundwater stress in neighbouring regions drives the prices in a 
region upwards. (High-High regions of GW stress coincided with High-High 
regions of prices).

● Interestingly, for a region, its own groundwater shows an inverse relation with 
prices and rainfall levels show a positive relation with prices. But, for the 
neighbouring regions, both these signs are flipped. 

● So, in a sense, the own and neighbouring effects of groundwater as an input 
on price are non-complementary in nature. 



Zone Variable (Dependent: 
Modal Price)

Coefficient (SE)

HUMID Intercept 560.19*** (144.34)

GW -0.23 (1.16)

Rainfall -0.01 (0.13)

Lagged GW 0.14 (2.05)

Lagged Rainfall  -0.21 (0.15)

ARID Intercept 467.46*** (74.32)

GW -5.34* (3.09)

Rainfall 0.18 (0.14)

Lagged GW 9.62* (5.51)

Lagged Rainfall -0.21 (0.15)

N: 1025 | Rho: 0.72
Log likelihood: -7455.16

LM test for residual autocorrelation test value: 20.25***

Spatial Durbin 
Model: Zone-wise

***p≤0.01 | **p≤0.05 | *p≤0.10



Spatial Durbin Model Inferences_Part 2:

● For arid regions, groundwater in both own and neighbouring locations has a 
significant role to play in price determination. While higher GW stress in a 
region leads to lower prices in that region, in general being surrounded by 
highly stressed regions, drives the price upwards. (overall shortage in supply, 
could drive the price upwards.) 

● For humid regions, both the types of water inputs do not play a significant 
role in market price determination. (Only scarcity/ over-abundance of water 
has an impact on price.)  

● Also, LM test value becomes less significant as compared to the spatial lag 
model, thus justifying the model preference of Spatial Durbin model.



ML Estimation of the Spatial Error Model

- MLE of the spatial simultaneous autoregressive error model of the form:

Y = Xβ + u, u = λWu + ε

Variable (Dependent: 
Modal Price)

Coefficient (SE)

Intercept 1900.62*** 
(67.80)

GW 15.48***
(1.10)

Rainfall  -0.23*** 
(0.08)

N: 1025 | Lambda: 0.74
Log likelihood: -7468.63

***p≤0.01 | **p≤0.05 | *p≤0.10



Zone Variable (Dependent: 
Modal Price)

Coefficient (SE)

ARID Intercept 1999.01*** 
(78.78)

GW  10.14***
(1.16)

Rainfall -0.38*** 
(0.10)

HUMID Intercept 1813.77*** 
(95.56)

GW 5.58* 
(3.08)

Rainfall -0.1
(0.10)

N: 1025 | Lambda: 0.73
Log likelihood: -7464.535

***p≤0.01 | **p≤0.05 | *p≤0.10

Spatial Error 
Model: Zone-wise



Lagrange Multiplier Test Statistics
(Spatial regression by AEZ)

- Both LMerr and LMlag are highly significant, while RLMlag is still strongly 
significant, there is much weaker evidence given by RLMerr. Hence, it 
suggests lag model as better alternative.

Model GW GW + 
Rainfall

Spatial Error Model 1248.8*** 1156.30***

Robust Spatial Error Model 3.05* 0.30

Spatial Lag Model 1316.3*** 1180.70***

Robust Spatial Lag Model 70.50*** 24.73***
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Thank you.


